The MeerKAT radio telescope (and some other animals)

Justin Jonas and Roy Booth

NASSP-north discussion

Overview

- Context
- MeerKAT Science & Specifications
 - System engineering and design
- Establishing the Karoo site
- XDM
- KAT-7
- African VLBI Network

The SKA in Africa

The MeerKAT Programme

- Africa will have a legacy of a large radio telescope.
 - Irrespective of the outcome of the SKA site competition (but happy with the SKA decision!)
 - But not independent of the SKA.
 - Largest radio telescope in southern hemisphere, one of the largest in the world.
- MeerKAT is an SKA "precursor".
 - Engineering prototype and early science (SKAmid "Phase 0"). Now constitutes 25% SKA1
 - Drive the establishment of the Karoo Radio Astronomy Reserve.
 - SA funding about 400 million USD (including a large HCD programme.

MeerKAT high-level spec

- The most sensitive cm-wavelength telescope in the southern hemisphere (aspiration: world)
- 580 MHz 15(+) GHz (i.e. SKA-mid +)
- Imaging and non-imaging modes
- High filling factor for baselines < 1 km
- Baselines out to ~8 km (but longer baselines planned – now through SKA1)

MeerKAT High Level Spec

	KAT-7 (2011)	MeerKAT Phase 1 (2016)	Future Phases/ SKA Phase 1
Frequency Bands (GHz)	1.2 – 1.95	0.9 – 1.726	0.58 - 1.015 0.9 - 1.726 8 - 14.5 1.5 - 3 (cont. funding) 5 - 22
BW _{RF}	256 MHz	770 MHz	6500 MHz
ADC	800 MSa/s	1712 MSa/s	15 GSa/s
BW _{Processed}	256 MHz	770 MHz	2000 MHz (goal 4000 MHz)
B _{min}	20 m	29 m	29 m
B _{max}	200 m	8 km	20 km (<mark>SKA1</mark>)
Sens		>> 220 m ² /K (300 m ² /K goal)	
No. Dishes	7	64 x 13.5m gregorian offset	

Configuration (64 antennas)

Future Phases

- Phase 2: 580-1000 MHz (UHF)
- Phase 3: 8-14.5 GHz (X/Ku-band)
- Aspirations (contingent on money and/or technology availability):
 - 20+ km baselines (SKA1)
 - 1.5-3 GHz for NanoGrav
 - 5-22 GHz wideband receiver

MeerKAT Large Surveys

- Radio Pulsar Timing (Bailes) [7860 h]
- LADUMA: Ultra-deep pencil beam HI survey (Blyth, Holwerda, Baker) [5000 h]
- MESMER: MeerKAT Search for Molecules in EoR (Heywood) [6500 h]
- MeerKAT Absorption Line Survey (Gupta, Srianand) [4000 h]
- MHONGOOSE: MeerKAT HI Observations of Nearby Galactic Objects: Observing Southern Emitters (de Blok) [6000 h]
- A MeerKAT HI Survey of Fornax (Serra) [2450 h]
- MeerGAL: MeerKAT High Frequency Galactic Plane Survey (Thompson, Goedhart) [3300 h]
- MIGHTEE: MeerKAT International GigaHertz Tiered Extragalactic Exploration (Jarvis, van der Heyden) [1950 h]
- TRAPUM: Transients and Pulsars with MeerKAT (Stappers, Kramer) [3080 h]
- ThunderKAT: The Hunt for Dynamic and Explosive Radio Transients with MeerKAT (Woudt, Fender) [3000 h = 100 min/day for 5 years] + commensal search for transients
- VLBI (Bietenholz)

MeerKAT Large Survey Pls (17-18 April 2011)

System CoDR (5-8 July 2010)

- Gregorian offset antennas
 - Multiple receivers
 - RFI rejection
 - Spectral & imaging dynamic range
 - Sensitivity
 - 64 x 13.5 m
- Cryo-cooled, octave band, single pixel receivers
 - Sensitivity
- Direct digitization
 - Spectral dynamic range
- Software collaboration
 - CASA

Implications for receptor

- Low contributions to T_{sys}
 - Low spillover & correlated ground signals
 - Minimize scattering structures
- Maximize A_e for specified sidelobe envelope
 - Minimize/eliminate aperture blockage
- Multiple receivers
 - A_e/T_{sys} and DR have priority over Rx BW, therefore >1 Rx
- Predictable, time-stable, frequency-smooth and limited (*I*,*m*) support E-Jones
 - Solid angle used for calibration/imaging
 - Pointing variation within characteristic calibration timescale
 - Polarization
 - Gain ripple
- Rotational symmetry of inner beam pattern (P-Jones)
 - Gain variation within characteristic calibration timescale
- Low far-out sidelobes
 - Minimize scattering structures
- Clean RF signal path (G- and B-Jones)
 - Cable routing
 - Direct digitization
 - Self-generated RFI

Prior to Concept Design Review

KAT-7 antenna

Single cryogenic octave-band receiver

Single-reflector symmetric centre-fed antenna with aperture blockage

Analogue signal transport and remote digitization Dual offset reflectors

1111

Multiple cryogenically-cooled octave-band receivers

Direct digitization at the receiver •nb SKA1

Baseline

design

- Gregorian offset dualreflector antennas
 - Allows multiple receivers without aperture blockage
 - Superior RFI rejection
 - Superior sensitivity and signal fidelity
- Cryogenically cooled octave-band receivers
 - Superior sensitivity and signal fidelity
- Direct digitization
 - Superior signal fidelity

Antenna Status

- Extensive EM and mechanical modelling completed
- All reviews completed, including international participants
 - Gregorian offset
 - No aperture blockage with multiple receivers
 - Superior RFI rejection
 - Cryo-cooled receivers
 - Direct digitisation
- Tender published and awarded last month
 - 64 x 13.5m gregorian offset dishes

Virtual MeerKAT

Karoo Radio Astronomy Reserve

18

Karoo Radio Astronomy Reserve

C-BASS North **OVRO**

PAPER (Precision Array to Probe Epoch of Reionization)

Galford Meadow NRAO:Greenbank

National Radio Astronomy Observatory A facility of the National Science Foundation

10 min – minimal RFI flagging

PEAK = 5.6247E-02 JY/EEAM IMNAME= PSA-2 SUM 7 Image courtesy of Chris Carilli and PAPER consortium

Minimal RFI flagging with PAPER

Spectrum availability of the Karoo site (top) and Green Bank (below)

XDM 15-m

- First MeerKAT prototype antenna
- Composite structure
- Being fitted with S/X-band receiver for (geodetic) VLBI

KAT-7

- Array of 7 antennas
- Component and system level prototyping
- Build experience in science and engineering teams
- Establish infrastructure in the Karoo
- Engage with local industry
- Produce publishable science

KAT-7

Cape Town KAT-7 Control Room

CEN A

Cen A (PAPER – Carilli)

37

PKS 1610-60

NGC 3109 (HI)

Right Ascension (J2000)