Before the IAU 1976 resolutions, different values for the approximately
aberration constant were employed
at different times, and this can complicate comparisons
between different catalogues. Another complication comes from
the so-called E-terms of aberration,
that small part of the annual aberration correction that is a
function of the eccentricity of the Earth's orbit. The E-terms,
maximum amplitude about
,
happen to be approximately constant for a given star, and so they
used to be incorporated in the catalogue
to reduce the labour of converting to and from apparent place.
The E-terms can be removed from a catalogue
by
calling
sla_SUBET
or applied (for example to allow a pulsar
timing-position to be plotted on a B1950 finding chart)
by calling
sla_ADDET;
the E-terms vector itself can be obtained by calling
sla_ETRMS.
Star positions post IAU 1976 are free of these distortions, and to
apply corrections for annual aberration involves the actual
barycentric velocity of the Earth rather than the use of
canonical circular-orbit models.
The annual aberration is the aberration correction for
an imaginary observer at the Earth's centre.
The motion of a real observer around the Earth's rotation axis in
the course of the day makes a small extra contribution to the total
aberration effect called the diurnal aberration. Its
maximum amplitude is about
.
No SLALIB routine is provided for calculating the aberration on its own, though the required velocity vectors can be generated using sla_EVP and sla_GEOC. Annual and diurnal aberration are allowed for where required, for example in sla_MAP etc. and sla_AOP etc. Note that this sort of aberration is different from the planetary aberration, which is the apparent displacement of a solar-system body, with respect to the ephemeris position, as a consequence of the motion of both the Earth and the source. The planetary aberration can be computed either by correcting the position of the solar-system body for light-time, followed by the ordinary stellar aberration correction, or more directly by expressing the position and velocity of the source in the observer's frame and correcting for light-time alone.
SLALIB --- Positional Astronomy Library