Next Previous Contents

6. Examples of Input Files and Catalogues

6.1 Continuum Radiometry: Multi-Wavelength Scans of a Calibrator

This is a source file to carry out continuum radiometry using the stepping and scanning techniques for comparison, on a flux calibrator at four frequencies as it crosses the zenith meridian. The catalogue that it refers to follows it. This type of file would typically be scheduled in to calibrate other observing.

JJ: Note that the RA and DEC keywords in the catalogue will be used to define a source-centred coordinate system. Because "SCANTYPE=STEP" the "PROJTYPE" defaults to "TAN", i.e. no need to worry about "Cos Dec" corrections in steps. Until Steer is modified the TAN coordinate projection will be approximated by CAR.


SETUP
OBSERVER  G.D. NICOLSON
PROJECT   flux calibration
PROPOSAL  1999.001
CATALOG   calibrators.cat
OUTFILE   calibrator.data       // output file for all scans
CONF      1666NA
RESTFREQ  1666E6                // use 18cm receiver at 1666MHz
INSTRUME  NA                    // use noise-adding radiometry
WEATHER   cloud
ENDCONF  
CONF      2300NA
RESTFREQ  2300E6                // use 13cm receiver
INSTRUME  NA                    // use noise-adding radiometry
WEATHER   cloud
ENDCONF  
CONF      5000DI
RESTFREQ  5000E6                // use 6cm receiver
INSTRUME  DICKE                 // use dicke radiometry, beam-switching mode
WEATHER   clear
ENDCONF  
CONF      8500DI
RESTFREQ  8500E6                // use 3.5cm receiver
INSTRUME  DICKE                 // use dicke radiometry, beam-switching mode
WEATHER   clear
ENDCONF  
DEFCONF   1666NA 2300NA 5000DI 8500DI  // use all 4 conf blocks as default
ENDSETUP

OBJECT    0915-11               // use the definitive flux calibrator
SOURCE    1
SCANTYPE  STEP                  // first we step at all frequencies
STEPSEQ   FNNCAL, HPN, ON, HPS, FNS, FNE, HPE, ON, HPW, FNW
HALIST    0h00m                 // starting at HA = 0 hour JJ notation

OBJECT    0915-11
SOURCE    2                     // same object name so add a SOURCE ident.
SCANTYPE  SCANPNT               // now we do cross-scans at all frequencies
HALIST    1h00m                 // starting at HA = 1 hour in postfix notation

The continuum calibrator catalogue calibrator.cat, would have multiple entries like this:


COMMENT   fluxes of these calibrators are computed using:
COMMENT   Log(S/Jy) = C1 + C2*log(F/MHz) + C3*(log(F/MHz))**2
REFERENC  Ott et al. (1994) AA 284, 331.
OBJECT    0915-11, 3C218, Hydra A, HydA
COORDSYS  EQUATORIAL
EQUINOX   1950.0
RA        09 15 41
DEC       -11 53 06

OBJFLUX   4.729 -1.025 +0.0130  // coefficients C1, C2, C3 for flux calc
CALRANGE  1408E6 10550E6        // valid frequency range for computing flux
COMMENT   galaxy, size 47" * 15"

With appropriate programming, using the information in the catalogue the calibrator flux density at each frequency used can be written to the output file for use in calibrating the day's observing, together with the observational data.

6.2 Continuum Radiometry: Routine monitoring of Cir X-1

This demonstrates the use of some of the scheduling options. Note that the interval between binned samples for the output is adaptively set to match the beamsize, with say 12 points per halfpower beamwidth, by the standard drift scan software (or SYPARM), so is not specified. Parameters used in the example are "inspired" by those found in HP/OBCIR.

This input file would set up three drift scans per day at 3.5cm, starting one day before the expected transition date through two days after the transition date. The transition dates are calculated from the STRTDATE and first INCREMNT parameter.

All post-observing data processing such as subtracting off a background, fitting a polynomial to the baseline, measuring peak heights by Gaussian fitting are done by standard analysis programs using the data recorded in the disk file. These processes could be done by a LINES command file, for example.

JJ: Because "SCANTYPE=DRIFT" the default "PROJTYPE" is "NONE" and "X" and "Y" are preset to "RA" and "DEC".


SETUP
OBSERVER  G.D. NICOLSON
PROJECT   monitor flux of flaring binary star Circinus X-1
PROPOSAL  1999.002
COMMENT define all receivers of interest for Cir X-1 in setup, 
COMMENT `useconf' specifies those wanted for each object
COMMENT non-flaring currently so only use most sensitive receiver, 3.5cm

CONF      13                    // configuration block name 
RESTFREQ  2300E6                // use 13cm receiver
INSTRUME  NA                    // use noise-adding radiometer pair
SCANDIST  1.85d                 // scan length at 13cm, in degrees
STRTTIME  SUNSET                // JJ alternative to NIGHTOBS
ENDTIME   SUNRISE               // JJ
ENDCONF                         // end of configuration block

CONF      6                     // new configuration block name 
RESTFREQ  5000E6                // use 6cm receiver
INSTRUME  DICKE                 // use dicke radiometer, beam-switching mode
SCANDIST  1.85                  // scan length at 6cm   OR
SUNDIST   45                    // observe at 6cm if > 45 deg from Sun
                                // implicit ENDCONF as new CONF follows

CONF      3.5                   // new configuration block name 
RESTFREQ  8500E6                // use 3.5cm receiver
INSTRUME  DICKE                 // use dicke radiometer, beam-switching mode
SCANDIST  1.082d                // scan length at 3.5cm
SUNDIST   30d                   // observe at 3.5cm if > 30 deg from Sun
RCVNAME   3.5                   // implicit ENDCONF as ENDSETUP or OBJECT follows
ENDSETUP
                                // blank line to be pretty
OBJECT    CIR X-1               // start of scan definition
COORDSYS  EQUATORIAL            // just so
EQUINOX   1950.0                // B1950 coordinate equinox
RA        229.201               // RA in decimal degrees
DEC       303.013               // Dec in decimal degrees
SCANTYPE  DRIFT                 // drift scan
STRTDATE  2443075.87            // 1976 d 299.37; JD avoids leapyear problems
                                // one day before flare epoch
ENDDATE   2443078.87            // two days after flare epoch, giving 3 days of
                                // observations
INCREMNT  16.5768               // period (ignore Pdot)
OUTFILE   cirx1                 // output file name for all scans
HALIST    -3h30m 0h +3h30m      // scans at three hour angles
USECONF   3.5                   // only use config named 3.5
REPEATS   2                     // do two scans for comparison
WEATHER   clear                 // observe only in clear weather
ENDOBJ                          // (redundant) end of object scan definition

6.3 Continuum Radiometry: Scans for a large map

This is how we would probably implement Sarah's mapping technique, not to be confused with Skymap. Notice that there is no mention of an ST or RA, so the scheduler will have to deal with galactic coordinates. Each scan is written to a separate file to aid data editing.


SETUP
OBSERVER  J.L. JONAS
OBSLOCAL  G.D. NICOLSON
PROJECT   galactic plane map at 3.5cm
PROPOSAL  1999.003
COORDSYS  GALACTIC              // ###JJ###
                                // ###JJ### no need for EQUINOX
CONF      8000NA
RESTFREQ  8000E6                // 3.6cm map ###JJ###
INSTRUME  NA                    // use noise-adding radiometer pair
                                // ###JJ### presumably this will set up
                                // "Beam A" feed offsets???  JQ ?
ENDCONF

SCANTYPE  SCAN                  
PROJTYPE  TAN                   // ###JJ### default would be "CAR", but
                                //   we want to compare with optical image
GLON      270d                  // Galactic coordinated of map centre
GLAT      +20d                  //
LONGPOLE  0.0                   // ###JJ### this is the default field
                                // rotation, so not strictly needed
HALIMIT   3h0m                  // ###JJ### no need for constant HA start,
                                //       only reasonable elevation
                                // ###JJ### no generic OUTFILE
WEATHER   clear                 // observe only in clear weather

DEFCONF   8000NA
ENDSETUP

                                // ###JJ### new scan definitions
OBJECT    SCAN001X
OUTFILE   mapjj.x.1.fits        // individual output file
STARTX    -5d                   // new way of specifying scan start//stop
STARTY    -5d                   //   relative to special point (map centre)
STOPX     -5d                   // default would be STARTX
STOPY     +5d
SCANTIME  100                   // scan at (5+5)/100 = 0.1 deg/sec
                                // DEFCONF automatically paster in
OBJECT    SCAN002X
OUTFILE   mapjj.x.2.fits        // individual output file
STARTX   -4.9d                  // new way of specifying scan start/stop
STARTY    +5d                   // relative to special point (map centre)
STOPX     -4.9d                 // default would be STARTX
STOPY     -5d                   // scan spacing is 0.1 degree
SCANTIME  100                   // scan at 10/100 = 0.1 deg/sec
                                // DEFCONF automatically pasted in

etc

OBJECT    SCAN001Y
OUTFILE   mapjj.y.1.fits        // individual output file
STARTX    -5d                   // new way of specifying scan start/stop
STARTY    -5d                   //   relative to special point (map centre)
STOPX     +5d
STOPY     -5d                   // default would be STARTY
SCANTIME  100                   // scan at 10/100 = 0.1 deg/sec
                                // DEFCONF automatically pasted in
etc

6.4 Continuum radiometry: a scan at constant elevation

This is part of an input file to show the coordinate specification for a doing a scan at constant elevation, from JJ.

#JJ#: This example (and your drift scan example) show up an interesting problem: how do you scan through a target specified in a celestial coordinate system using geocentric coordinates to specify the scan. In the above example I have made no attempt to scan through a target, rather assumed the required criterion was to scan at a given elevation with no real regards to the celestial coordinate requirements.

Note: This needs a preceding SETUP section to give all mandatory keywords for this single scan.


OBJECT    FRED const elevation  // object for scan
COORDSYS  HORIZON               // not strictly needed - AZ, EL  unique
AZ        0                     // use "native" az/el coords
EL        0                     // 
PROJTYPE  NONE                  //
SCANTYPE  SCAN                  // active scan in galactic coordinates
STARTX    0                     // scan start azimuth
STOPX     180                   // scan end azimuth
STARTY    40                    // constant elevation
STOPY     40                    //     of 40 deg 
SCANTIME  100                   // scan time in seconds
OUTFILE   jjconel

6.5 Continuum radiometry: a scan in declination

Partial input file for a declination scan, from JJ.

Note: This needs a preceding SETUP section to give all mandatory keywords for this single scan.


OBJECT    Sgr A declination scan// object for scan
COORDSYS  EQUATORIAL            // not strictly needed - RA, DEC unique
EQUINOX   B1950                 // needed
PROJTYPE  NONE
RA        17 42 26.6            // = GLON 0.000
DEC       -28 55 0.4            // = GLAT 0.000
SCANTYPE  SCAN                  // active scan in equatorial coordinates
STARTX    0                     // scan start offset in RA - ie track in RA
STOPX     0                     // scan end offset in RA - ie track in RA
STARTY    -5                    // scan start offset in DEC
STOPY     +5                    // scan end offset in DEC
SCANTIME  100                   // scan time in seconds
OUTFILE   jjdecscan

6.6 Continuum radiometry: a circular scan at the beam halfpower point

This makes use of the proposed projection type called "ZEN" which is a "native zenithal projection". This would simply point the pole of the native system at the "special point" and would therefore aleviate the need for the DEC-90 calculation. The euler angles would be set to:

The input file would become:

Note: This needs a preceding SETUP section to give all mandatory keywords for this single scan.


OBJECT    TAU A circular scan
COORDSYS  EQUATORIAL
EQUINOX   B1950
SCANTYPE  SCAN
RA        82.880                // point pole of native system at source
DEC       21.982
PROJTYPE  ZEN                   // zenithal coordinates with no projection
STARTX    0                     // do full circle
STOPX     360                   // do full circle
STARTY    HP                    // spec for circle at halfpower point
STOPY     HP                    // HP got from SYPARM for this frequency
OUTFILE   taucirc 

MG: even more user-friendly is to let the software do the obvious stuff:


OBJECT    TAU A circular scan
COORDSYS  EQUATORIAL
EQUINOX   B1950
SCANTYPE  SCANCIRC
RA        82.880                // point pole of native system at source
DEC       21.982
RADIUS    HP                    // spec for circle at halfpower point
OUTFILE   taucirc 

6.7 Continuum radiometry: a small map of the Sun

This map is to be observed on 1999 11 11. It uses the default scanrate and binsize.

JJ: Added projection stuff. Uses the JPL solar system ephemeris.

Note: I haven't checked that this conforms with our current input format and mandatory requirements - it lacks STRTDATE, ENDDATE etc.


OBJECT    SUN                   // Sun map
PROJECT   Sun map at 2.5cm
PROPOSAL  1999.004
OBJECT    SUN                   // use JPL solar ephemeris for position
OBSERVER  J. QUICK
COORDSYS  ECLIPTIC              // sun position specified by ecliptic long.
PROJTYPE  TAN                   // ###JJ### make a map that can be directly
                                //   compared with an optical image.
RESTFREQ  12180E6               // 2.5cm
INSTRUME  TP                    // use total power radiometer pair
SCANTYPE  MAP                   // small map, uninterrupted
OUTFILE   sunmap
SIZELONG  1.0                   // 1 x 1 degree map

6.8 Continuum radiometry: a small map of the Moon

This map is to be observed on 1999 11 03. It uses the default scanrate and binsize.

Note: I haven't checked that this conforms with our current input format and mandatory requirements - it lacks STRTDATE, ENDDATE etc.


OBJECT    MOON                  // Moon map
PROJECT   Moon map at 2.5cm
PROPOSAL  1999.005
OBJECT    MOON                  // use JPL moon ephemeris
OBSERVER  J. QUICK
COORDSYS  EQUATORIAL            // moon position using apparent equatorial
EQUINOX   APPARENT              // ###JJ### explicit specification needed
PROJTYPE  TAN                   // ###JJ### make a map that can be directly
                                //   compared with an optical image.
RESTFREQ  12180E6               // 2.5cm
INSTRUME  TP                    // use total power radiometer pair
SCANTYPE  MAP                   // small map, uninterrupted
OUTFILE   moonmap
SIZELONG  1.0                   // 1 x 1 degree map

6.9 Spectroscopy: Monitoring a Methanol Maser

This is an extract from a typical 6.7-GHz methanol monitoring input file, set up as though the old correlator were running on the NCCS. Some keywords may change for the new correlator, and additional ones may be needed.


SETUP
OBSERVER  S. GOEDHART
PROJECT   6.7-GHz methanol maser monitoring
PROPOSAL  1999.006

CONF      6668SPEC
RESTFREQ  6668.518E6            // methanol
SCANTYPE  SPECTRUM              // implies instrument = spectrometer
ENDCONF 

DEFCONF   6668SPEC
ENDSETUP
                                // blank line for readability
OBJECT   G213.71-12.60 PNT      // name change for pointing
SOURCE   1
COORDSYS  GALACTIC              // ###JJ### not strictly needed because of
GLON     213.710                // 
GLAT     -12.600                // 
SPVLSR   +11.0                  // km/s
SPBW     1.0e6                  // Hz
SPFS     0.5e6                  // Hz (freq switch by half the bandwidth)
SPCHAN   1024                   // Numbe rof correlator channels
SPTIME   300                    // each scan 5 minutes long
SPPOINT                         // do pointing observations N S E W ON ON
OUTFILE   sgg21371

OBJECT   G213.71-12.60          // standard name for source
SOURCE   2
COORDSYS  GALACTIC              // ###JJ### not strictly needed because of
GLON     213.710                // 
GLAT     -12.600                // 
SPVLSR   +11.0                  // km/s
SPBW     1.0e6                  // Hz
SPFS     0.5e6                  // Hz (freq switch by half the bandwidth)
SPCHAN   1024                   // Numbe rof correlator channels
SPTIME   300                    // each scan 5 minutes duration
REPEATS  4                      // do 4 ON ON scan pairs
OUTFILE   sgg21371


and so on for the next object.

6.10 Pulsar Timing: Monitoring the Vela Pulsar

Pulsar timing requires many parameters to be defined. The example below is derived from the information in the file PULSAR::16 on the HP1000, and the Pulsar Observing Software User's Guide.

Pulsar timing input file for regular monitoring of the Vela pulsar at two frequencies:


Setup
observer  S.Buchner
project   Dual frequency continuous monitoring of Vela Pulsar
Proposal  2003.001
scantype   PULSAR
strtdate 2003 05 16
strttime 00 00 00
enddate  2003 07 30
endtime  12 00 00
priority Interrupt

CATALOG   ../pulsars/pulscat.txt

CONF   18cm
RESTFREQ   1668.0E6                // observe at 18cm, standard frequency
BANDWDTH   8.0E6
ENDCONF

CONF      13cm
RESTFREQ  2272.8E6                // also observe at 13cm, std. freq.
BANDWDTH   16.0E6
ENDCONF

endsetup
Object   PSR 0833-45
USECONF   18cm
pltconst 150
plpint  500
plcal
HALIST -6.0h -5.0h -4.0h -3.0h -2.0h -1.0h 0.0h 1.0h 2.0h 3.0h 4.0h 5.0h
6.0h
OUTFILE   0833_18cm
repeat 1
endobj

Object   PSR 0833-45
USECONF   13cm
pltconst 150
plpint  500
plcal
HALIST -6.0h -5.0h -4.0h -3.0h -2.0h -1.0h 0.0h 1.0h 2.0h 3.0h 4.0h 5.0h
6.0h
OUTFILE   0833_13cm
repeat 1
endobj

Object   PSR 0833-45
USECONF   18cm
pltconst 150
plpint  500
OUTFILE   0833_18cm
endobj

Object   PSR 0833-45
USECONF   13cm
pltconst 150
plpint  500
OUTFILE   0833_13cm
endobj

The pulsar catalogue, pulscat.txt, would have multiple entries like this:


Object                  PSR 0833-45, Vela pulsar
coordsys                equatorial
ra                      8h 35m 20.6761s
dec                     -45d 10m 35.7581s
equinox                 J2000
plperiod                0.089339249061
plpdrv1                 124.4499E-15
plpdrv2                 -44.390E-25
pldm                    68.02
pldmdrv                 0.0
plepoch                 52567.56263

6.11 Holography Mapping: Creating a map of the dish

Holography requires a few basic parameters, this is an example of an input file to create a map using the satellite Eutelsat W2


SETUP
OBSERVER  Benjamin Klein
PROJECT   Test of Holography
PROPOSAL  2003.01
OBSLOCAL  ben
STRTDATE  2007 349
STRTTIME  00 00 00.0
ENDDATE   2008 350
ENDTIME   00 00 00.0
PRIORITY  interrupt
ENDSETUP

OBJECT EUTELSAT W2
SOURCE  1
RESTFREQ  11698.0E6
BANDWDTH  4E6
SCANTYPE  Holography
comment coordsys apparent
source = 1

HORSSZ 100
HORSPC 0.045
HOSPNT  1
HOCHN 1024
HOITM 3
// HOEPNT -  automatically set to 100
HONMBST 5
HOSCPBST 4
//HOOVRSMP - automatically set 1.2
EPHEM1 1 25491U 98056A   08044.78960597  .00000105  00000-0  10000-3 0  4744
EPHEM2 2 25491   0.0575 346.1859 0004405 332.7245 124.4927  1.00272189 34315
LONOFFSE  0.02907  // HA actual - trying
LATOFFSE  0.00296 //DEC
ENDOBJ


Next Previous Contents